Code: EE5T1

III B. Tech - I Semester - Regular Examinations - November 2014

ELECTRICAL MACHINES-III (ELECTRICAL & ELECTRONICS ENGINEERING)

Duration: 3 hours

Marks: 5x14=70

Answer any FIVE questions. All questions carry equal marks

- 1. a) With neat diagram explain the characterization of salient pole rotors. Give limitations & applications of it. 7 M
 - b) A 3-Ø, 20 pole, star connected alternator has the following data: Number of slots = 240, Conductors per slot = 10, Coil span = 150⁰ (Electrical) Speed of alternator = 300 rpm Flux/pole = 56 mwb. Calculate:
 - i. Frequency of induced EMF
 - ii. Pitch Factor
 - iii. Distribution Factor
 - iv. Winding Factor
 - v. Number of turns/phase
 - vi. Phase and Line voltages.

7 M

- 2. a) Explain the leakage reactance and armature reactance of an alternator.

 7 M
 - b) A 3- φ , star connected alternator is rated 1600KVA, 13500V. The effective armature resistance and reactance are 1.5 Ω /ph and 30 Ω /ph respectively. Calculate the percentage regulation for a load of 1280KW at a power factor of

- (i) 0.8 leading
- (ii) 0.8 lagging.

7 M

- 3. a) Explain the procedure to find out Xd and Xq of salient pole machine through an experiment.

 7 M
 - b) A 3 phase 17.32KVA, 400V, star connected alternator is delivering rated load at 400V and at p.f. 0.8lag. Its synchronous impedance is 0.2 + j2 per phase. Find the load angle at which it is operating.

 7 M
- 4. a) Define the infinite bus bar? What are the characteristics of an infinite bus bar? 7 M
 - b) A 3000 KVA, 6 pole alternator runs at 1000 rpm in parallel with other machines on 3300 V bus bars. The synchronous reactance is 20 %. Calculate the synchronizing Power for one mechanical degree of displacement and the corresponding torque.

 7 M
- 5. a) Draw the excitation circle for a synchronous motor. How is it derived?
 - b) A 3-Ø, 6600 V, star connected synchronous motor works on constant voltage and constant excitation. Its effective per phase synchronous reactance is 18 Ω & has negligible armature resistance. For a certain load, the input is 1111.145 kW & power factor is 0.8 leading. Find the power factor when the input is changed to 1500 kW.

- 6. Explain different methods of starting of a synchronous motor. 14 M
- 7. Describe constructional features and operating characteristics of an AC Series Motor and mention its uses.

 14 M
- 8. a) What is the reluctance torque? Draw the torque speed curve of a reluctance motor.
 - b) Explain, how a stepper motor works with variable reluctance principle.

 7 M